Modeling and prediction of multivariate space-time random fields
نویسندگان
چکیده
In various environmental studies multivariate spatial–temporal correlated data are involved, hence appropriate techniques to enhance space–time prediction are in great demand. An extension of multivariate spatial geostatistics to a spatio-temporal domain might be a straightforward task; nevertheless, up to now, little has been done in a multivariate spatial–temporal context. Modeling and prediction techniques are described for a multivariate space–time random %eld, moreover some theoretical and practical aspects are investigated for a bivariate space–time random %eld through a case study. c © 2004 Elsevier B.V. All rights reserved.
منابع مشابه
Evaluation of Univariate, Multivariate and Combined Time Series Model to Prediction and Estimation the Mean Annual Sediment (Case Study: Sistan River)
Erosion, sediment transport and sediment estimate phenomenon with their damage in rivers is a one of the most importance point in river engineering. Correctly modeling and prediction of this parameter with involving the river flow discharge can be most useful in life of hydraulic structures and drainage networks. In fact, using the multivariate models and involving the effective other parameter...
متن کاملGyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملModeling and prediction of time-series of monthly copper prices
One of the main tasks to analyze and design a mining system is predicting the behavior exhibited by prices in the future. In this paper, the applications of different prediction methods are evaluated in econometrics and financial management fields, such as ARIMA, TGARCH, and stochastic differential equations, for the time-series of monthly copper prices. Moreover, the performance of these metho...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملMultivariate Operator-Self-Similar Random Fields
Multivariate random fields whose distributions are invariant under operatorscalings in both time-domain and state space are studied. Such random fields are called operator-self-similar random fields and their scaling operators are characterized. Two classes of operator-self-similar stable random fields X = {X(t), t ∈ R} with values in R are constructed by utilizing homogeneous functions and sto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 48 شماره
صفحات -
تاریخ انتشار 2005